

The SuperKEKB Project

KAGEYAMA Tatsuya
on behalf of the KEKB accelerator team

October 24, 2005

PANIC05
Particles and Nuclei International Conference
Santa Fe, New Mexico

What is SuperKEKB?

- An asymmetric-energy* double-ring e⁺e⁻ collider proposed to advance the luminosity frontier of HEP beyond 10³⁵ cm⁻² s⁻¹.
- To be constructed by upgrading the KEKB collider, currently providing the highest luminosity (1.58 x 10³⁴ cm⁻² s⁻¹) on the planet.

Peak Luminosity Trends

KEKB

Asymmetric-Energy Double-Ring Collider for B-Physics

8-GeV e⁻ beam (HER) x 3.5-GeV e⁺ beam (LER)

1989: Design work started.

1994: Approval of the budget,

construction started.

Jun. 1995: KEKB Design Report

Sep. 1997: Commissioning of the injector

Linac started.

Dec. 1998: First beam at HER.

Jan. 1999: First beam at LER.

May 1999: Belle roll-in.

Jun. 1999: First event at Belle.

Apr. 2001: World record of the luminosity,

 $3.4 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$.

Oct. 2002: World record of the integrated

luminosity, 100 fb⁻¹.

May 2003: Exceeded the design

luminosity, 1.0 x 10³⁴ cm⁻² s⁻¹.

Mar. 2005: 1.5 x 10³⁴ cm⁻² s⁻¹ and integrated

luminosity per day > 1000 pb⁻¹

Oct. 2005: Integrated luminosity > 480 fb⁻¹

Where is KEKB?

The KEKB double-ring collider is located near Mt. Tsukuba with twin peaks.

KEKB Machine Performance Steadily Improving ...

Stable and Smooth Operation

Stable Acceleration of High Current Beams

- •HER beam up to 1.34 A by 12 NC ARES Cavities and 8 SC Cavities.
- •LER beam up to 1.86 A by 20 NC ARES Cavities.

Nikko RF section

What is ARES Cavity?

Accelerator Resonantly coupled with Energy Storage 3-cavity system stabilized with the $\pi/2$ -mode operation

 S cavity functions as an EM flywheel to stabilize the accelerating mode against heavy beam loading:

$$U_{\rm s}/U_{\rm a} = 9$$

 U_s : EM stored energy in S cavity U_a : EM stored energy in A cavity

- No need for longitudinal bunchby-bunch feedback.
- The accelerating cavity is equipped with RF absorbers (SiC) to damp Higher Order Modes (HOMs) induced by the bunched beam.
- Input coupler operated up to 460 kW (up to 800 kW at test stand).

AC: Accelerating Cavity (HOM-damped)

SC: Storage Cavity (TE013)

CC: Coupling Cavity damped with an antenna-type coupler (C damper)

Fundamentals of the ARES Cavity System

$$\frac{U_s}{U_a} = \frac{k_a^2}{k_s^2}$$
 for $\pi/2$ mode

KEKB Superconducting Cavity

- HOM-damped SC cavity of cylindrical symmetry, equipped with HOM absorbers (ferrite).
- KEKB SC cavity accelerating the highest current of 1.34 A on the planet.
- Input coupler operated up to 380 kW.

Electron Clouds Cleared Up! But not as clear as the sky over Santa Fe.

 The total length covered by solenoids reached 2300 m, about 95% of the drift space.

Specific luminosity vs. LER current: Solenoids are just so effective.

Solenoid Winding Continues to Reduce the Cloud Cover.

Beam-Beam Collision Scheme in KEKB

KEKB's beam-beam collision scheme with a finite crossing angle has been working well as expected.

Crabbing Maneuver

You're cleared to land.

-

Crosswind Landing
by
Crabbed Approach

According to simulation studies, a head-on colliding of crabbed bunches can further boost the KEKB performance.

Superconducting Crab Cavity for KEKB

Crab cavity loaded with coaxial coupler for damping HOMs & LOMs other than the deflecting dipole mode.

Crab cavity in He vessel

Crab Cavity Cell under Surface Treatment by High-Pressure Water Rinse

Projection of KEKB Luminosity

SuperKEKB

Next Step to Advance the Luminosity Frontier beyond 10³⁵ cm⁻² s⁻¹.

Advancing the luminosity frontier, orthogonal to the energy frontier, is also indispensable for deepening our understanding of the universe.

Upgrading from KEKB to SuperKEKB Requires Brute-Force and Smart-Force Approaches.

Three factors to determine luminosity:

Stored current:

1.34 / 1.8 A (KEKB)

 \rightarrow 4.1 / 9.4 A (SuperKEKB)

Beam-beam parameter:

0.057 (KEKB)

→ 0.19 (SuperKEKB)

Lorentz factor

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{I_{\pm} \xi_{\pm y}}{\beta_y^*} \left(\frac{R_L}{R_y} \right)$$

Classical electron radius

Beam size ratio

Geometrical reduction factors due to crossing angle and hour-glass effect

Luminosity:

$$0.15 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} \text{ (KEKB)}$$

 4×10^{35} cm⁻²s⁻¹ (SuperKEKB)

Vertical β at the IP:

5.2/6.5 mm (KEKB)

→ 3.0/3.0 mm (SuperKEKB)

SuperKEKB

SuperKEKB Requires More RF Sources and More RF Cavities

* 1MW CW Klystron (509 MHz)

Upgrading ARES Cavity

- Fortunately, ARES scheme is flexible to upgrade: By increasing U_s/U_a from 9 to 15, the severest beam instability can be eased by one order of magnitude and manageable with an RF feedback system.
- The HOM absorbers (SiC) need to be upgraded: The HOM power per cavity is estimated about 90 kW for the design beam current 9.4 A for LER.

Upgrading Superconducting Cavity

- Cavity structure not changed.
- The HOM absorbers (ferrite) need to be upgraded:
 The HOM power per cavity is estimated about 50 kW for the design beam current 4.1 A for HER.

R&D of Vacuum Components for SuperKEKB

Beam duct with antechamber

- Smaller SR Power Density
- Lower Impedance
- Lower photoelectron production by TiN or NEG coating

New design with pumps in Q and SX magnets

→ uniform pumping

R&D of Vacuum Components for SuperKEKB

Beam duct with antechamber: Prototype chambers have been tested in the KEKB LER.

R&D of Vacuum Components for SuperKEKB

Bellows chamber with comb type RF-shield: Some prototypes have been tested in KEKB and showing good performance.

Y. Suetsugu

- High thermal strength
- Low impedance
- No sliding contact on the surface facing the beam

A bellows chamber damaged by the high-current beam.

A Scenario for Upgrading KEKB to SuperKEKB

Summary

- KEKB has been the front runner on the luminosity frontier.
- Crabbing maneuver is going to be introduced in early 2006.
- 1 ab⁻¹ will be reached around 2007.
- A technically feasible design of SuperKEKB for 4x10³⁵ cm⁻² s-1 has been done.

Followed by Backup Slides

SuperKEKB Machine Parameters

Parameters		LER	/ HEF	2.	Unit
Beam energy	E		/ 8.0		GeV
Beam current	I	9.4 / 4.1		A	
Particles/bunch	N	$1.18 \times 10^{11} / 5.13 \times$		$\times 10^{10}$	••
Number of bunches	n_b		018	X 10	
Circumference	C	_	16.26		m
Bunch spacing	s_b		0.6		m
Horizontal β at IP	β_x		0.2		m
Vertical β at IP	β_y		.003		m
Bunch length	σ_z	0.003		m	
Radiation loss	U_0	1.23 / 3.48		MeV/turn	
Synchrotron tune	ν_s	0.031 / 0.019		ivie v / turn	
Horizontal betatron tune	ν_x	45.506 / 44.515			
Vertical betatron tune	ν_x ν_y	43.545 / 41.580			
Crab cavities	ν y	No	<u> </u>	es	
Horizontal emittance	_	30	_		*****
	ε_x		24		nm %
Coupling parameter	κ	6 1		,	
Crossing angle	θ_x	30 0 (crab)		mrad	
Luminosity reduction*	R_L	0.76 0.8			
ξ_x reduction*	R_{ξ_x}	0.73		.99	
ξ_y reduction*	R_{ξ_y}	0.94	1.11		
Horizontal beam-beam*	ξ_x	0.079	0.137		
Vertical beam-beam*	ξ_y	0.051		218	
Beam-beam simulation		S-S W-S	S-S	W-S	
Vertical beam-beam (simulation)	ξ_y	0.051	0.14	0.28	
Luminosity	L	1	2.5	5	$\times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

^{*} nominal value

S-S : Strong-Strong simulation W-S : Weak-Strong simulation

Table 1.1: Machine parameters of SuperKEKB.

Machine Parameters

Table 1: Machine parameters of Super PEP-II at SLAC and SuperKEKB at KEKB.

14010 1.1		PEP-II Super PEP-II KEKB SuperKEKB							
	LER	HER	LER	HER	LER	HER	LER	HER	
Energy	3.1	9.0	3.5	8.0	3.5	8.0	3.5	8.0	GeV
Particle	e^+	e^{-}	e^{-}	e^+	e^+	e^{-}	e^{-}	e^+	
Circumference	22	00	2200		3016		3016		m
Current	2.45	1.55	15.5	6.8	1.69	1.24	9.4	4.1	A
Bunches	15	88	6900		12	1293 5000			
Curr./bunch	1.54	0.98	2.25	0.99	1.27	0.98	1.88	0.82	mA
Spacing	1.	26	0.31		1.77 or 2.36		0.59		m
Cross. Angle	()	30		22		30		mrad
Emittance ε_x	51	27	28	28	19	24	24	24	nm
β_x^*	30	50	15	15	59	56	20	20	em
β_{u}^{*}	1.1	1.03	0.15	0.15	0.65	0.62	0.30	0.30	em
Hor. Size @IP			65	65	103	103	69	69	μ m
Ver. Size @IP			.6	.6	2.2	2.2	.73	.73	μ m
Bunch Length	12.3	11.4	1.75	1.75	4.7	4.8	3.0	3.0	mm
RF Voltage		16.8	43	33	8	15	15	20	MV
RF Freq.	4	76	952		509		509		MHz
ξ_x	0.112	0.038	0.105	0.105	0.116	0.076	0.152	0.152	
$\xi_{x, ext{dynamical effects}}$	0.038	0.039					0.041	0.041	
ξ_y	0.064	0.043	0.107	0.107	0.092	0.056	0.215	0.215	
$\xi_{y, ext{dynamical effects}}$	0.054	0.037					0.187	0.187	
Luminosity	0.9	21	7	0	1.5	333	4	0	$10^{34}/{\rm cm}^2/{\rm s}$

Beam-beam collision scheme: Head-on, or with a finite crossing angle

Comparison of luminosity-dependent background due to <u>radiative</u> <u>Bhabha</u> events. Without crossing angle, this effect is significant.

M. Sullivan

RF Parameters for SuperKEKB

Parameters		LER	HER	Unit
Beam current	I _b	9.4	4.1	Α
Energy loss/turn	U _o	1.2	3.5	MeV
Loss factor	k _{total}	40	50	V/pc
Bunch length	$\sigma_{\!_{\rm Z}}$	3	3	mm
Radiation loss power	P _{b,rad}	11.3	14.3	MW
Parasitic loss power	P _{b,para}	7.1	1.7	MW
Total beam power	P _{b,total}	18.4 16.0		MW
Total RF voltage	$V_{c, total}$	14.0 23.0		MV
RF frequency	f _{RF}	508.8	MHz	
Revolution frequency	f _{rev}	99.	kHz	
Cavity type		ARES	ARES/SCC	
# of cavities		28	16/12	
Voltage/cavity	V _c	0.5	0.5/1.3	MV
Beam power/cavity	$P_{\rm b}$	650	650/460	kW
Wall loss/cavity	P _c	233	150/-	kW
Detuning frequency	$\Delta f_{\rm a}$	45	31/74	kHz
# of klystrons		28	16/12	
Klystron power	P _{kly}	930	850/480	kW
Total AC power		40	23/10	MW

Guideline:

- Adopt the same RF frequency as KEKB.
- Make the most of the existing RF system.

K. Akai

Injector Linac Upgrade for SuperKEKB

Energy Upgrade (8 GeV Positrons)
Replace S-band (2856 MHz) RF system with
C-band (5712 MHz) system to double
field gradient in downstream section of linac.
(The present max. energy gain is 4.8 GeV)

T. Kamitani et al.

Injector Linac Upgrade for SuperKEKB

C-Band Linac for SuperKEKB

Unit

 $\frac{\mathrm{mm}}{\mathrm{mm}}$

 $\frac{\mathrm{mm}}{\mathrm{mm}}$

 $M\Omega/m$

	S-band	C-band		
Parameters	KEKB	1-st prototype	2m-structure	
total length	2.072	1.082	2.0	
number of regular cells	54	54	108	
regular cell length (d)	35.0	17.5	17.5	
disk thickness (t)	5.0	2.5	2.5	
disk iris diameter (2a)	24.95 - 20.90	12.48 - 10.45	14.03 - 10.54	
cavity diameter (2b)	83.0 - 82.0	41.5 - 41.0	42.0 - 41.0	
group velocity (v_g/c)	1.4	1.9 - 1.0	2.8 - 1.0	
shunt impedance	57	75 - 85	67 - 85	
Q factor	13700	9690	9700	
RF power in cells	30 - 15	34 - 15	50 - 15	
Field gradient	21	41.2 - 39.0	42.5 - 38.1	
Filling time	462	234	376	
Attenuation constant	0.302	0.434	0.696	

Prototype C-band structure installed and tested at linac using actual beam (2003). Measured field gradient of 41 MV at 43 MW agrees with expectation.

Figure 11.7: C-band 1m-long accelerating section (1-st prototy

